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Abstract

I propose an easy-to-code numerical scheme for the equations of compressible ideal magnetohydrodynamics (MHD)

in multiple space dimensions. The presented method employs the central-upwind scheme of Kurganov et al. [SIAM J.

Sci. Comput. 160 (2001) 707] in semi-discrete form combined with the constrained transport technique to satisfy the

divergence-free condition for the magnetic field up to machine precision on the numerical grid. A variety of test

problems in 1D, 2D and 3D show the robustness and efficiency of this �hybrid ansatz� which renders it an interesting

alternative to existing, numerically more intricate, solvers for the MHD equations.
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1. Introduction

Upwind differencing schemes have gained great focus in modeling hydrodynamical phenomena as well as

in the numerical integration of other hyperbolic systems of conservation laws. The main advantage of the

concept of upwinding is that it provides a natural access to a treatment of shocks and other flow dis-

continuities without requiring artificial viscosity typical for (non-conservative) operator splitting methods

[38,45]. Since the seminal first-order scheme of Godunov [15] higher-order methods based on the upwind

approach have been invented. One such famous scheme is the (formally second-order) piecewise parabolic

method (PPM) advocated by Colella and Woodward [7]. PPM is characterized by a low numerical diffusion
in smooth regions of the flow and its capability to permit a steep representation of captured discontinuities.

This is achieved by a flux-limited piecewise parabolic reconstruction algorithm. Higher-order generaliza-

tions of Godunov-type upwind schemes have been developed by Harten et al. [16] (see also [36,37]),
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involving essentially non-oscillatory (ENO) piecewise polynomial reconstruction techniques or, more re-

cently, weighted essentially non-oscillatory (WENO) interpolation routines [20,27]. The main disadvantage

of upwind schemes is that they require full information about the eigenstructure of the underlying equa-
tions which is needed to solve the Riemann problem at cell interfaces or for characteristic decomposition.

Problems arise in particular when dealing with more complex physical systems involving, for instance,

dissipative forces, chemical reactions between different species, relativistic effects or radiation transport.

Upwind schemes then encounter severe difficulties due to degeneracies in the eigensystem and may become

not only too intricate to code but also less robust.

A different class of numerical schemes for conservation laws which admit a relatively simple formulation

and which do not rely on Riemann solvers are central differencing schemes. The most simplest among them

is the Lax–Friedrich scheme [30]. Motivated by the need to reduce the overwhelming numerical dissipation
in the Lax–Friedrich method higher-order versions of central schemes have been constructed. The first

second-order variant is the scheme of Nessyahu–Tadmor [32]. It uses a linear reconstruction profile in space

and employs the midpoint quadrature formula to approximate the time integrals of the fluxes. A genuinely

2D version of the 1D Nessyahu–Tadmor scheme has been developed by the authors in [1,19]. Higher-order

extensions of the Nessyahu–Tadmor scheme are reported in [2,31]. Higher-order central schemes which

apply a WENO-type reconstruction can be found in [25,26]. A special family of central schemes elaborated

in a series of papers [21–24] is characterized by using more precise information of the local propagation

speeds, thus, lowering the numerical viscosity further. Again, these types of schemes retain its simplicity
over upwind schemes of being independent of the eigenstructure of the problem. One special feature of such

�low-viscosity� methods is that they admit a semi-discrete form. The advantage of such semi-discrete for-

mulation is that it more easily allows to construct genuinely unsplit schemes in multiple space dimensions.

A fully discrete version is then recovered by discretizing the set of ODEs in time applying any stable ODE

solver, e.g. a Runge–Kutta solver.

The author�s interest lies in the numerical modeling of astrophysical phenomena described by the

equations of magnetohydrodynamics (MHD). In numerical schemes for the MHD equations the crucial

issue is to preserve the divergence constraint r � B ¼ 0 for the magnetic field B to the highest possible
accuracy. This is because magnetic monopols generated by the discretized system lead to unphysical effects,

e.g. artificial accelerations transverse to the magnetic field lines and wrong field topologies [3,4]. Several

strategies have been proposed to deal with that problem. A natural method which automatically maintains

solenoidality is the constrained transport (CT) method. The CT idea, described in detail, e.g. by Evans and

Hawley [14], is based on a staggered collocation of the magnetic- and electric field components and employs

a special discretization of Faraday�s law (induction equation) such that the divergence of the curl of the

electric field vanishes numerically. An obvious disadvantage of CT is that it cannot be incorporated as an

integral part in Godunov-type schemes which require cell-centered data. Balsara and Spicer [5] in their
Godunov-type scheme therefore introduce a second set of (now staggered) magnetic field components. The

staggered field is updated with CT preservingr � B ¼ 0 and uses an upwind electric field computed from the

base scheme, however, with cell-centered magnetic field data. This approach has proven robust. Similar

strategies have been investigated by Toth [39] for different second-order accurate Riemann-solver-based

schemes and Ryu et al. [35]. Londrillo and Del Zanna [29] have applied the CT philosophy to a third-order

ENO-type central scheme for multi-dimensional, non-relativistic MHD and have proposed explicit upwind

formulae for the electric field which do not require the definition of cell-centered magnetic field data. An

extension of that scheme to the equations of relativistic MHD has been presented just recently by Del
Zanna et al. [12].

A completely different way to remove the unphysical part of the magnetic field is to use a projection

method as suggested by Brackbill and Barnes [4]. In the projection method the r � B ¼ 0 violating magnetic

field is projected onto the space of divergence-free B-fields after each time-step at the expense of requiring

the solution of a Poisson equation. Other methods have been proposed based on propagating and damping
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away arising errors in r � B. Powell et al. [33] advocated the use of a modified (eight-wave) Roe-type

Riemann solver to maintain the divergence-free constraint at least to a level comparable to the truncation

error. This approach propagates errors in r � B with the fluid velocity and introduces source terms pro-
portional to r � B in the momentum-, energy-, and induction equation. Modifications of this ansatz are

discussed in [9,18]. A combined hyperbolic–parabolic divergence cleaning was studied by Dedner et al. [8]

using the so-called generalized Lagrange multiplier method.

In this paper I suggest an easy-to-code method for the solution of the equations of ideal MHD which

combines a semi-discrete central scheme with the constrained transport recipe to ensure solenoidality of the

magnetic field up to machine precision. The MHD solver is second-order accurate in space and time. The

algorithms are discussed in Section 3 after the basic equations have been introduced in Section 2. In Section

4, the scheme is validated by means of a variety of test problems in 1D, 2D and 3D. Some concluding
remarks are finally given in Section 5.
2. Equations

The basic equations ought to be solved here numerically are the equations of ideal magnetohydrody-

namics given in the conservation form

ot.þr � ð.vÞ ¼ 0; ð1Þ
otð.vÞ þ r � .vv

�
þ p
�

þ 1

2l
jBj2

�
I � 1

l
BB

�
¼ 0; ð2Þ
oteþr � e
��

þ p þ 1

2l
jBj2

�
v� 1

l
ðv � BÞB

�
¼ 0; ð3Þ
otBþr� E ¼ 0; ð4Þ

subject to the constraint

r � B ¼ 0:

Beside the magnetic field B, . is the mass density, e is the (total) energy density, v is the velocity, E ¼ �v� B
is the electric field and l is the magnetic permeability. It is assumed that the thermal pressure p can be

computed from an ideal gas equation of state

p ¼ ðc� 1Þ e
�

� 1

2
.jvj2 � 1

2l
jBj2

�
; ð5Þ

where c is the ratio of specific heats.
3. The MHD solver

Eqs. (1)–(4) are approximated on a uniform 3D Cartesian grid indexed ½ijk� where ðxi; yj; zkÞ locates the
center of the numerical cell spanning a volume ½xi�1=2; xiþ1=2� � ½yj�1=2; yjþ1=2� � ½zk�1=2; zkþ1=2�. I focus on

Cartesian systems here to simplify the presentation. The more general case of orthogonal curvilinear co-
ordinates should cause no principle difficulties and is studied after a covariant version of the scheme is
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available. The grid spacings in the x-, y- and z-direction are denoted by dx, dy and dz, respectively. Let
u ¼ ð.; e;mx ¼ .vx;my ¼ .vy ;mz ¼ .vzÞ represent the vector of conserved hydrodynamical variables and let

uijk denote the numerical approximation to the corresponding volume-averaged variables in cell ½ijk�.
Due to the structure of Faraday�s law (Eq. (4)) containing the curl operator instead of the divergence

operator, a natural grid representation of the magnetic field vector turns out a staggered collocation of its

components to be interpreted then as approximations to the face-averaged field. For the Bx-component, for

instance,

Bxi�1
2
;j;k �

1

dydz

Z
½y
j�1

2
;y
jþ1

2
��½z

k�1
2
;z
kþ1

2
�
Bxðxi�1

2
; y; zÞdy dz:

Analogue expressions can be written down for Byi;j�1
2
;k and Bzi;j;k�1

2
. The collocation of variables is illustrated

in Fig. 1(left).

The numerical scheme proposed in this paper to solve the MHD system profits from two major de-

velopments in the field: (i) the semi-discrete central scheme for conservation laws constructed by Kurganov

et al. [24] referred to as KNP scheme in the following and (ii) the constrained transport technique to ap-

proximate Faraday�s law. In essence, the full system, Eqs. (1)–(4), is considered as two subsystems. The first,
consisting of Eqs. (1)–(3), represents a system of conservation laws solved with the KNP scheme. Not to

review all the details here the KNP scheme as a central scheme does not need (linearized) Riemann solvers

and does not suffer from computationally expensive characteristic decomposition. Yet, the scheme has an

upwind nature since it incorporates information about the local speeds of wave propagation. The second

subsystem, the induction equation (4), is treated with the CT ansatz. However, CT is linked to KNP by

utilizing the KNP flux in order to find a proper upwind electric field for use in the CT algorithm.

3.1. Semi-discrete central scheme

To solve Eqs. (1)–(3) the KNP scheme is adapted to MHD where the flux function includes the Lorentz

force term. In the original work of [24] the KNP scheme has been derived for 2D systems with third-order

accuracy in both a fully discrete version and a semi-discrete variant. A 3D generalization of the fully

discrete scheme would be a rather messy task. Generalizing the corresponding semi-discrete scheme to three

space dimensions, on the other hand, is straightforward. In unsplit form it reads
y
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Fig. 1. Left: Collocation of the MHD variables in a 3D cell ½ijk�. Right: Locations of the reconstructed variables uNðS;W;E;T;BÞ (and

BNðS;W;E;T;BÞ defined at the same locations) appearing in the numerical flux of the KNP scheme.
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d

dt
ui;j;kðtÞ ¼ �
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; ð6Þ

where
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2
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2
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are the numerical fluxes which, of course, depend on time. From Eqs. (1)–(3) the flux functions fx, fy and fz

are given by

fx ¼

mx

ðeþ p þ B2=2lÞmx � Bxðm � BÞ=l
� �

=.
m2

x=.þ p þ ð�B2
x þ B2

y þ B2
z Þ=2l

mxmy=.� BxBy=l
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0
BBBB@

1
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The quantities uNðS;W;E;T;BÞ ¼ ð.; e;mx;my ;mzÞNðS;W;E;T;BÞ
and BNðS;W;E;T;BÞ ¼ ðBx;By ;BzÞNðS;E;W ;T ;BÞ

represent the

reconstructed variables at the six face-centered locations N; S;W;E;T;B (see Fig. 1, right) at time t. a�

denotes the maximum (plus sign) and minimum (minus sign) local speed at the cell surface in x-direction, i.e.

aþ
iþ1

2
;j;k

¼ maxfðvx þ cfÞWiþ1;j;k; ðvx þ cfÞEi;j;k; 0g;
a�iþ1
2
;j;k ¼ minfðvx � cfÞWiþ1;j;k; ðvx � cfÞEi;j;k; 0g;

where cf is the fast magnetosonic speed given by
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cf ¼
1

2
c2S

"
þ c2A þ ðc2S

�
þ c2AÞ

2 � 4c2S
B2
x

l.

�1=2
#1=2

:

cS ¼ ðcp=.Þ1=2 is the sound speed and cA ¼ ðB2=l.Þ1=2 is the Alfv�en speed. b� (c�) are the corresponding

local speeds in the yðzÞ-direction which one obtains by replacing vx with vyðvzÞ in the above expressions for
A� evaluated now at N,S (T,B) positions. Note that the KNP flux is equivalent to the HLL flux formula

introduced by Harten, Lax, van Leer as two-speed approximate Riemann solver.

3.2. Reconstruction

Evaluation of the numerical fluxes requires point values of the variables at the centers of the cell surfaces,

i.e. at positions E (xiþ1
2
; yj; zk), W (xi�1

2
; yj; zk), N (xi; yjþ1

2
; zk), S (xi; yj�1

2
; zk), T (xi; yj; zkþ1

2
) and B (xi; yj; zk�1

2
). A

linear reconstruction process is used adopting the TVD slope limiter of van Leer [41]. For any hydrody-

namical variable at E,W-location, for example,

uE;Wi;j;k ¼ ui;j;k � ðdxuÞi;j;k;

where the plus sign corresponds to the E-location, the minus sign to the W-location and

ðdxuÞi;j;k ¼
max ðuiþ1;j;k � ui;j;kÞ � ðui;j;k � ui�1;j;kÞ; 0

	 

uiþ1;j;k � ui�1;j;k

:

Analogue expressions can be derived for the other locations N,S,T,B.
The reconstruction of the magnetic field is as follows. Let us again refer to the E,W-location along the x-

direction. Note first that, because of the staggered definition of field components, no reconstruction is

needed for Bx in this case. Indeed, that component is already in correct position. For the transverse

components By and Bz reconstructions are performed to the cell edges and then averaged to the cell surfaces.

Thus, at E-location

BE
xi;j;k ¼ Bxiþ1

2
;j;k;
BE
yi;j;k ¼

1

2
Byi;jþ1

2
;k

�
þ Byi;j�1

2
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2
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2
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�
;
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1

2
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�
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2
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2
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2

�
;

and at W-location

BW
xi;j;k ¼ Bxi�1

2
;j;k;
BW
yi;j;k ¼

1

2
Byi;jþ1

2
;k

�
þ Byi;j�1

2
;k � ðdxByÞi;jþ1

2
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2
;k

�
;
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zi;j;k ¼

1

2
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2

�
þ Byi;j;k�1

2
� ðdxBzÞi;j;kþ1

2
� ðdxBzÞi;j;k�1

2

�
:

I omit the corresponding formulae for the N,S,B,T-locations. It should be clear from the context how these

look like.
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3.3. Constrained transport

From an application of Stoke�s theorem a finite-volume discretization of the induction equation (4) is
given by

d

dt
Bxi�1

2
;j;k ¼ �

Ezi�1
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; ð7Þ
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where
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2
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2
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are approximations to the line-averaged electric field components defined at cell edges as shown in
Fig. 1(left). Recall the definition of the B�s as numerical approximations to the face-averaged magnetic field

components. Like the hydro fluxes the electric field components at this stage are time-dependent quantities

since no time discretization is given yet. The time rate of change of discretized divergence in cell ½ijk�
evaluated using B-data becomes to second-order

d

dt
ðr � BÞi;j;k ¼

d
dt Bxiþ1

2
;j;k � d

dt Bxi�1
2
;j;k

dx
þ

d
dt Byi;jþ1

2
;k � d

dt Byi;j�1
2
;k

dy
þ

d
dt Bzi;j;kþ1

2
� d

dt Bzi;j;k�1
2

dz
:

Using Eqs. (7)–(9) one easily derives dðr � BÞi;j;k=dt ¼ 0 since electric field components pairwise cancel.

Hence, if r � B ¼ 0 everywhere initially, the evolved magnetic field remains solenoidal.

The electric field in Eqs. (7)–(9) takes on the role of the fluxes in Eq. (6) and the main question is how to
compute it properly. The recipe applied here is rather simple and relies on utilizing the KNP scheme:

(i) Note first that the induction equation can be transformed into divergence form with an antisymmetric

flux tensor, i.e.

otB ¼ �r� E ¼ r �
0 Ez �Ey

�Ez 0 Ex

Ey �Ex 0

0
@

1
A:

(ii) From the flux tensor construct numerical fluxes Ex;Ey ;Ez using the KNP flux formula. These fluxes are
definitely defined at cell surfaces like their hydrodynamical counterparts Fx;Fy ;Fz. The resulting ex-

pressions read:
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where ENðS;W;E;T;BÞ ¼ �vNðS;W;E;T;BÞ � BNðS;W;E;T;BÞ denotes the reconstructed electric field vector at

N(S,W,E,T,B)-location.

(iii) From the face-centered fluxes obtained in that way compute edge-centered electric fields by suitable

interpolations, i.e.

Exi;j�1
2
;k�1

2
¼ 1

4
ð�Ey

zi;j�1
2
;k
� Ey

zi;j�1
2
;k�1

þ Ez
yi;j;k�1

2
þ Ez

yi;j�1;k�1
2
Þ;
Eyi�1
2
;j;k�1

2
¼ 1

4
ðEx

zi�1
2
;j;k þ Ex

zi�1
2
;j;k�1

� Ez
xi;j;k�1

2
� Ez

xi�1;j;k�1
2
Þ;
Ezi�1
2
;j�1

2
;k ¼

1

4
ð�Ex

yi�1
2
;j;k � Ex

yi�1
2
;j�1;k þ Ey

xi;j�1
2
;k
þ Ey

xi�1;j�1
2
;k
Þ;

for use in the updating formulae (7)–(9).
Remark.

• The above composition rules are for the 3D case. In 2D on a ½ij�-grid

Exi;j�1
2
¼ �Ey

zi;j�1
2

;

Eyi�1
2
;j ¼ Ex

zi�1
2
;j;
Ezi�1
2
;j�1

2
¼ 1

4
ð�Ex

yi�1
2
;j � Ex

yi�1
2
;j�1

þ Ey
xi;j�1

2

þ Ey
xi�1;j�1

2

Þ;

and in 1D on a ½i�-grid

Exi ¼ 0;
Eyi�1
2
¼ Ex

zi�1
2
;

Ezi�1
2
¼ �Ex

yi�1
2
:
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• The idea to calculate the electric field fluxes for the CT update from the underlying conservative

base scheme (here the KNP scheme) follows closely the work of [5,35,39]. Balsara and Spicer [5]

introduced a staggered B which is updated with CT coexisting with a cell-centered B used to compute

fluxes in their upwind scheme. However, as pointed out by these authors, it may sometimes become nec-
essary to recompute the pressure using the staggered magnetic field violating energy conservation, i.e.

consistency of the induction equation with the energy equation is lost. This is not the case here since

no cell-centered field is involved and all the reconstruction is based on the staggered magnetic field

components.

• The various interpolation procedures likely introduce some additional amount of diffusion but do not

destroy the second-order accuracy of the full MHD scheme on smooth flows which is experimentally

proved below (Section 4.2). Furthermore, interpolation enlarges the stencil which complicates parallel-

ization tasks and the carry-over of the scheme to adaptive grids.
• An interesting alternative to calculate electric field fluxes for the induction equation which does not rely

on face-to-edge interpolation has been discussed by Zanna et al. [12] in their ENO-type central scheme.

They propose a HLL formula for E which is a modification of the corresponding formula for the hydro

flux taking into account the staggered collocation of B. This formula is based on four-state quantities

(instead of two in the hydro fluxes) for each E-component. Although no rigorous derivation has been

given by [12], their formulation is strongly motivated by the fact that it matches exactly the HLL formula

described in [24] for Hamilton–Jacobi equations to what the induction equation in 2D reduces for given

velocity field.
3.4. Time integration

The full system of ODEs is integrated with a second-order Runge–Kutta scheme. Denoting the right-

hand side of Eq. (6) as F½u;B� and the right-hand sides of Eqs. (7)–(9) as E½u;B� then

u� ¼ un þ dt � F ½un;Bn�;
B
� ¼ B

n þ dt � E½un;Bn�;
unþ1 ¼ 1

2
un þ 1

2
ðu� þ dt � F ½u�;B��Þ;
B
nþ1 ¼ 1

2
B

n þ 1

2
ðB� þ dt � E½u�;B��Þ;

where dt is the numerical time-step restricted by the usual CFL criterion.
4. MHD test problems

The new scheme, which is referred to as KNPCT in the following, has been implemented in the NIR-

VANA code developed by the author (see [45,46]) and already used in many different astrophysical sim-

ulations (e.g. [43,44,47]). KNPCT is validated in one-, two- and three space dimensions. For the most test

problems presented here reference solutions exist in the literature obtained with different codes. Beside a

comparison with literature results, it is instructive to compare KNPCT with the previous NIRVANA solver
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(called FD in the following) – a non-conservative, operator-splitting scheme which makes use of tensor

artificial viscosity due to Tscharnuter and Winkler [40] to treat shocks. If not otherwise stated, in all test

problems the magnetic permeability l ¼ 1 and the artificial viscosity coefficient q ¼ 1:5 in the FD scheme.
Fig. 2. Numerical solution of the Brio–Wu Riemann problem for the KNPCT solver (plus signs), FD solver with q ¼ 1:5 (dotted lines)

and FD solver with q ¼ 4 (dashed lines) for N ¼ 800. The primitive variables ., p, vx, vy and By are shown. The solid curve in each plot

represents the reference solution.



U. Ziegler / Journal of Computational Physics 196 (2004) 393–416 403
A quantitative comparison of results is done by computing errors relative to the analytic solution, if

available, or a high-resolution run which then serves as reference solution. The relative error of some

variable u is denoted Eu and is expressed in the L1 norm

Eu ¼
P

ijk jui;j;k � urefi;j;kjP
ijk jurefi;j;kj

(for the 3D cases). The averaged error, E, is the mean of all or some Eu. From a comparison of errors at

different numerical resolutions the convergence rate of the schemes can be determined. This experimental

order of convergence (EOC) is obtained for all test problems.

4.1. 1D: Brio–Wu Riemann problem

In the MHD Riemann problem of Brio and Wu [6] one considers initial data consisting of the two

constant states

.
p
vx
vy
vz
Bx

By

Bz

0
BBBBBBBBBB@

1
CCCCCCCCCCA

L

¼

1

1
0

0

0

0:75
1

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

.
p
vx
vy
vz
Bx

By

Bz

0
BBBBBBBBBB@

1
CCCCCCCCCCA

R

¼

0:125
0:1
0

0

0

0:75
�1

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The interface separating the left and right state is located at x ¼ 0:5. The computational domain is x 2 ½0; 1�.
The initial data are evolved up to time t ¼ 0:1 using a value c ¼ 2 in the equation of state (5). Calculations

for both solvers, the FD solver and KNPCT solver, are performed on different grids with

N ¼ 100; 200; 400; 800 zones. Since no analytical solution is known for this problem, a high-resolution

KNPCT run with N ¼ 3200 serves as reference solution. Note that the results are directly comparable with

those presented in [6] using a second-order upwind scheme with approximate Riemann solver specifically

designed for that problem.
Fig. 2 presents the results of the computations for N ¼ 800. The KNPCT solution shows slight oscil-

lations between the shock and right rarefaction wave but otherwise compares favorable with the solution

given in [6]. The KNPCT solver obviously converges against the reference solution with an EOC of ap-

proximately 1 (see Table 1 whereas the FD scheme fails to do so. The FD solution strongly depends on the

amount of artificial viscosity and clearly has wrong states left and right to the shock with the shock itself

propagating at a too low speed. The failure of the FD solver is clearly a consequence of its non-conservative
Table 1

Brio–Wu Riemann problem

N FD KNPCT

E Ea EOC Time (s) E EOC Time (s)

100 0.0802 0.0470
0.51

5 0.0555
0.87

2

200 0.0667 0.0329
0.31

22 0.0301
1.05

8

400 0.0598 0.0267
0.20

89 0.0144
1.03

31

800 0.0559 0.0233 353 0.0071 123

aWith stronger artificial viscosity q ¼ 4.
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character. Table 1 reports the averaged error, E, defined as the mean of the individual errors of the

primitive variables ., p, vx, vy and By . Bx remains exactly constant, hence, does not contribute to E.

4.2. 2D: Circularly polarized Alfv�en waves

The propagation of a monochromatic circularly polarized Alfv�en wave is studied. The purpose of this

test problem is to check the second-order accuracy of the KNPCT scheme. The direction of propagation is

along the diagonal x ¼ y on the 2D domain ðx; yÞ ¼ ½0; 1�2 discretized by a N � N grid. Periodic boundary

conditions are adopted in both coordinate directions. At t ¼ 0, the density . ¼ 1 and pressure p ¼ 0:1. The
velocity and magnetic field components parallel respective transverse to the diagonal are

vk ¼ 0; Bk ¼ B0;
v? ¼ �B? ¼ A sin
2p
k
k̂ � x

� �
;

where k̂ ¼ 1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p� 

is the unit vector in the direction of propagation. From the parallel- and trans-

verse components one can compute the Cartesian components according to

Bx

By

� �
¼

1ffiffi
2

p 1ffiffi
2

p

1ffiffi
2

p 1ffiffi
2

p

 !
� Bk

B?

� �
:

The z-component of the vector fields are

vz ¼ �Bz ¼ A cos
2p
k
k̂ � x

� �
:

The parameters of the problem are chosen to A ¼ 0:01, B0 ¼
ffiffiffi
2

p
and k ¼ 1=

ffiffiffi
2

p
. Hence, there are exact two

wavelengths in the diagonal and the period of motion is given by P ¼ k=cA ¼ 0:5. The system is evolved one
period after which the resulting wave pattern should ideally match the initial profile. I calculate the error Evz

in the vertical velocity for grids N ¼ 20; 40; 80; 160. Fig. 3 shows that error as a function of the number of

grid points in a double logarithmic scale. As expected, second-order accuracy is achieved.
Fig. 3. Order-of-accuracy check of the KNPCT scheme for the Alfv�en wave problem. The error in vz is plotted as a function of the

number of grids points indicating second-order convergence.
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4.3. 2D: Oblique Riemann problem

This 2D test has been used, for instance, by the authors in [10,34,35,39]. A 1D Riemann problem with
initial left and right states

.
p
vk
v?
Bk
B?

0
BBBBBB@

1
CCCCCCA

L

¼

1

20

10

0

B0

B0

0
BBBBBB@

1
CCCCCCA
;

.
p
vk
v?
Bk
B?

0
BBBBBB@

1
CCCCCCA

R

¼

1

1

�10

0

B0

B0

0
BBBBBB@

1
CCCCCCA

is transformed onto a 2D domain such that the discontinuous interface lies at an angle a to the y-axis in a
Cartesian coordinate system (see Fig. 4). The resulting x-respective y-component of the vector fields are

derived from their given parallel- and transverse components according to

vx
Bx

� �
¼ vk

Bk

� �
cos a� v?

B?

� �
sin a;
vy
By

� �
¼ vk

Bk

� �
sin aþ v?

B?

� �
cos a:

The 2D problem is solved on a N � 4 grid spanning a narrow strip ðx; yÞ ¼ ½0; 1� � ½�2=N ; 2=N �. To give
that a sense shift-periodic boundary conditions are applied on the upper and lower y-boundary similar to

[39]. On the x-boundaries variables are fixed at their initial values since the simulations are stopped before

the fastest waves reach these boundaries.

The realization of shift-periodic boundary conditions becomes especially simple for certain a satisfying

the condition 4=N tan a ¼ mdx or 4 tan a ¼ m with m some integral number and dx ¼ dy ¼ 1=N the grid

spacing. I choose tan a ¼ 2 (a � 63�), i.e. m ¼ 8. In discretized form the shift-periodic boundary condition

on the upper (lower) y-boundary then reads ui;ju ¼ uiþ8;ju�4 (ui;jl ¼ ui�8;jlþ4) where u is any variable indexed

by ½ij� with two ghost zones ju (jl) on the upper (lower) side. Simulations for different resolutions
N ¼ 128; 256; 512; 1024 are performed. Results along the line y ¼ 0 at time t ¼ 0:08 cos a are compared

against a high-resolution (N ¼ 2048) 1D (a ¼ 0) calculation stopped at t ¼ 0:08. This reference solution has

been computed with the KNPCT solver.

The solutions generated by both solvers for N ¼ 256 are illustrated in Fig. 5. The quantities ., p,
vk ¼ vx cos aþ vy sin a, v? ¼ �vx sin aþ vy cos a, Bk ¼ Bx cos aþ By sin a and B? ¼ �Bx sin aþ By cos a are

shown. The KNPCT (FD) result is represented by plus signs (dashed lines). Solid lines in Fig. 5 depict the

reference solution. The averaged error, E, which is defined here as the mean value of E., Ep, Evk , Ev? , EBk and

EB? , respectively, as well as the convergence properties of both schemes are summarized in Table 2. Note
B
By=0

α

x=0.5

4/
N

4/N tan α  

Fig. 4. Illustration of the setup of the oblique Riemann problem.



Fig. 5. Numerical solution of the oblique Riemann problem. Results (N ¼ 256) are shown for the KNPCT solver (plus signs) and FD

solver (dashed lines). The reference solution is given by the solid line.
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first that, in spite of the use of artificial viscosity, the FD solver produces a rather bad solution (both the

leftgoing and rightgoing fast shocks are not in correct position, large spikes are generated in the variable v?,
wrong intermediate states are occupied best visible in the .- and B?-profiles) and non-convergence against



Table 2

Oblique Riemann problem

N FD KNPCT

E EOC Time (s) E EOC Time (s)

128 0.1644
0.30

11 0.0430
0.96

4

256 0.1332
0.15

44 0.0220
0.97

18

512 0.1199
0.08

176 0.0113
1.03

71

1024 0.1136 699 0.0057 301
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the reference solution results. In passing I note that without artificial viscosity FD produces a totally wrong

solution. The KNPCT scheme converges with EOC � 1. The resulting errors are comparable to those

reported in [39] found for different second-order upwind schemes. More specifically, when compared with

the corresponding plots in [39], the KNPCT solver performs better on Bk (which ideally should remain

unchanged from its initial value) than any scheme tested in [39] but, as might be expected for a central

scheme, is slightly less sharp at the contact discontinuities.

4.4. 2D: Orszag–Tang vortex

The Orszag–Tang vortex problem is given by the following initial conditions on a square domain

ðx; yÞ ¼ ½0; 2p�2:

. ¼ 25=9; p ¼ 5=3; v ¼
� sin y
sin x
0

0
@

1
A; B ¼

� sin y
sinð2xÞ

0

0
@

1
A:

Periodic boundary conditions are adopted in both coordinate directions and c ¼ 5=3. Numerical results for

both types of solvers are calculated on a N 2 grid with N ¼ 50; 100; 200 zones. The resulting numerical errors

are computed relative to a reference solution obtained with the KNPCT solver using N ¼ 400 zones. Note

that the initial setup of the problem is identical to that in [39], thus, allowing a direct comparison. Unlike in

[39], however, I do not fix the numerical time-step but fix the Courant number C ¼ 0:4. Errors are measured

at the evolution time t ¼ 3:14 when the initially smooth flow has turned into turbulence and has developed

a complex structure which contains discontinuities.

The resulting error in the temperature, ET , and the averaged error, E, defined here as the mean value of
the errors of the primitive variables ., p, vx, vy , Bx, By is listed in Table 3. The temperature distribution in the

half-plane x < p and for resolution N ¼ 200 is shown in Fig. 6. At first site the FD result and the KNPCT
Table 3

Orszag–Tang vortex

N FD KNPCT

ET E EOC Time (s) ET E EOC Time (s)

50 0.0891 0.1581
0.67

14 0.0791 0.1478
0.87

17

100 0.0723 0.0995
0.49

116 0.0416 0.0809
1.34

135

200 0.0682 0.0710 1037 0.0170 0.0319 1178

50a 0.1336 0.3017
0.51

10

100a 0.1209 0.1419
0.26

74

200a 0.1171 0.1183 646

aWithout artificial viscosity.
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result look quit similar. A more detailed inspection of the data, however, offers some discrepancies. For

instance, the point of intersection of weak discontinuities located at ðx; yÞ � ð2:2; 2:8Þ in the reference so-

lution is located at ðx; yÞ � ð2:1; 2:9Þ in the FD solution. FD becomes even worse without artificial viscosity.
Somewhat surprisingly, the KNPCT scheme converges at a rate 1.34 which is larger than unity expected for

flows dominated by discontinuities. When compared with literature (see e.g. [11,29,39,42]) the KNPCT

solver produces as accurate results as its Riemann-solver-based counterparts.

4.5. 2D: Rotor problem

The rotor problem has been suggested by Balsara and Spicer [5] as a test to check the propagation of

torsional Alfv�en waves. The initial condition consists of a rapidly rotating cylinder of dense gas embedded
in a lighter fluid at rest. The system is threaded by a uniform magnetic field along the x-axis and the

problem is defined on the 2D Cartesian domain ðx; yÞ 2 ½�0:5; 0:5�2. With r ¼ ðx2 þ y2Þ1=2 it is

. ¼ 1þ 9f ðrÞ;
p ¼ 1;
vx ¼ �2f ðrÞy=r; vy ¼ 2f ðrÞx=r; vz ¼ 0;
Bx ¼ 5=
ffiffiffiffiffiffi
4p

p
; By ¼ Bz ¼ 0;

where

f ðrÞ ¼
1 if r < 0:1;
200
3

0:115� rð Þ if 0:16 r6 0:115;
0 if r > 0:115:

8<
:

Fig. 6. Gray-scale image of the temperature distribution in the Orszag–Tang vortex problem for the FD solver (left) and KNPCT

solver (middle) with N ¼ 200 and for the reference solution (right). The range of data is 0:15ðblackÞ < p=. < 1:24ðwhiteÞ.
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The function f ðrÞ serves to smooth the discontinuities in the density and velocity at the cylinder surface

by letting both quantities vary in a linear fashion over a small distance dr ¼ 0:015 from the inner state

(r < 0:1) to the outer state (r > 0:115). The adiabatic index c ¼ 1:4. Note that this configuration is
identical to that in [39] named there �first rotor problem�. Runs are carried out on a N � N grid for

N ¼ 50; 100; 200; 400 zones. A KNPCT simulation with N ¼ 800 serves as reference solution. Zero-gra-

dient boundary conditions (open conditions) are applied in x and y for all variables including the stag-

gered magnetic field components.

In Fig. 7 contour plots of the pressure and Mach number, jvj=cs where cs ¼ ðcp=.Þ1=2 is the sound speed,

are shown at the final time t ¼ 0:15. Since centrifugal forces of the rotor are not compensated at the be-

ginning the denser fluid tends to expand radially. However, the winding up of the magnetic field accom-

panied by an increase in magnetic pressure stops expansion and the dense gas remains confined. As a
consequence of the interplay of forces the geometrical shape becomes elongated in x-direction. This de-

formation of the inner part is clearly seen in Fig. 7. A complicated structure of torsional Alfv�en waves

develops which mediate an exchange of angular momentum between the rotating, inner part and the

ambient medium.

A quantitative measure of the quality of results in terms of the averaged error of primitive variables is

compiled in Table 4. For the lower resolutions studied (N ¼ 50; 100) both type of schemes perform roughly

similar. For the larger resolutions (N ¼ 200; 400), however, the KNPCT solver gives smaller errors and a

convergence rate EOC > 1 despite the presence of sharp structures. Note again the bad convergence
properties of FD which, moreover, shows slight asymmetries in the solution in particular striking in the

Mach number plot showing a distortion of the central, oblate region of rotating fluid. Such asymmetries are

not adherent to the KNPCT scheme and the results, in general, compete with those obtained with more

sophisticated Riemann-solver-based schemes [5,39].
4.6. 3D: Spherical explosion

A problem of astrophysical interest is the simulation of a spherical explosion involving strong shocks.
The problem is set up on a unit cube ðx; y; zÞ 2 ½�1=2; 1=2�3 spanned by a grid with N � N � N zones. The

density . ¼ 1 everywhere and the initial velocity is zero. The explosion is initiated by a large overpressure in

a small spherical region of radius r ¼ 0:1:

p ¼ 104 if x2 þ y2 þ z2 < r2;
1 otherwise:

�

A uniform magnetic field By ¼ 100 is applied and Bx ¼ Bz ¼ 0. Note that in the surrounding medium the

plasma-b (¼ 2� 10�4) is rather small. Thermal properties are described by an adiabatic index of c ¼ 5=3.
Similar problems in two space dimensions can be found in [5,42].

Runs with different resolution N ¼ 64; 96; 144 have been performed. Fig. 8 illustrates the solution for

N ¼ 96 after a time t ¼ 2:5� 10�3. Contour plots of the magnetic pressure are presented. Due to the

presence of the strong magnetic field the explosion becomes highly anisotropic. The spherically sym-
metric shock characteristic for the field-free situation is split here into two shock fronts propagating

parallel to the magnetic field in �y-direction. Magnetosonic waves are launched traveling in the

transverse direction. A detailed look at the magnetic pressure distribution reveals that no unphysical

oscillations are produced by the KNPCT scheme whereas such spurious oscillations occur in the

FD result without artificial viscosity. The errors computed relative to the N ¼ 144 KNPCT solution

are listed in Table 5. The measured rate of convergence for the KNPCT scheme of EOC ¼ 1:47 is

superior.



Fig. 7. Pressure contours (left panels) and contours of the Mach number (right panels) in the rotor problem for the FD solver (top)

and KNPCT solver (middle) with N ¼ 400, and for the reference solution (bottom). The pressure contours range from 0.0202 to 2.008

and the Mach number contours from 0 to 8.18.
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Table 4

Rotor problem

N FD KNPCT

E EOC Time (s) E EOC Time (s)

50 0.1773
0.84

5 0.1657
0.85

7

100 0.0991
0.76

37 0.0921
0.97

53

200 0.0587
0.63

345 0.0470
1.29

519

400 0.0378 2998 0.0190 4478

Fig. 8. Magnetic pressure B2=2 in the spherical explosion problem for different runs: FD solver, q ¼ 0, N ¼ 96 (top left); FD solver,

q ¼ 1:5, N ¼ 96 (top right); KNPCT solver, N ¼ 96 (bottom left); reference solution (bottom right). The contour lines range from 2817

to 5932 corresponding to the minimum and maximum value obtained with the reference solution.
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4.7. 3D: Shock–cloud interaction

As a further problem of astrophysical relevance I consider the interaction of a strong shock wave with a

density clump in a magnetic environment. The initial conditions are taken from [39] (see also [10]), however,



Table 5

Spherical explosion

N FD KNPCT

Ea E EOC Time (s) E EOC Time (s)

64 0.1997 0.1613
0.67

1197 0.1635
1.47

1284

96 0.1813 0.1231
0.36

6581 0.0900 6882

144 0.1710 0.1062 39,386 0 37,948

aWithout artificial viscosity.
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extended to three space dimensions. Unfortunately, no literature solution is known to me (and likely there
is none in 3D) which could be employed here as a means of comparison. Similar problems without magnetic

field has been considered by the authors in [13,17,28]. The computational domain is a Cartesian box given

by ðx; y; zÞ 2 ½�1=2; 1=2�3. There is a discontinuity at x ¼ 0:1 with left and right states:

.
p
vx
vy
vz
Bx

By

Bz

0
BBBBBBBBBB@

1
CCCCCCCCCCA

L

¼

3:86859
167:345

0

0
0

0

2:1826182
�2:1826182

0
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1
CCCCCCCCCCA
;

.
p
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vy
vz
Bx

By

Bz

0
BBBBBBBBBB@

1
CCCCCCCCCCA

R

¼

1

1

�11:2536
0
0

0

0:56418958
0:56418958

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Note that the discontinuity moves in þx direction opposite to the highly supersonic flow right to the

discontinuity. At x ¼ ð0:3; 0; 0Þ a spherical density clump with radius 0:15 is embedded having a constant

density of 10. The clump is in pressure equilibrium with its surrounding medium. The adiabatic index

c ¼ 5=3. Zero-gradient boundary conditions are used for all variables in all directions except at the upper

x-boundary. There, variables except Bx are kept at their initial values. For Bx ghost zone values are cal-

culated using the constraint ðr � BÞijk ¼ 0 directly to preserve solenoidality of the magnetic field at that

boundary. Fig. 9 illustrates the geometrical setup of the problem.
Fig. 9. Illustration of the setup of the shock–cloud interaction problem.



Fig. 10. Grey-scale representation of log . with overlaid velocity field (left panels) and contour lines of Bx (right panels, solid lines cor-

respond topositive values anddashed lines to negative values) in the x–z coordinateplane.N ¼ 200 results for theKNPCTsolver (top), FD

solver with q ¼ 1:5 (middle) and FD solver without artificial viscosity (bottom). Note the individual data range given in each plot.
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Fig. 11. Density profile along the x-axis for KNPCT (plus signs), FD with q ¼ 1:5 (dashed line) and FD without artificial viscosity

(dotted line) for a resolution N ¼ 100. The solid line represents the reference solution.

Table 6

Shock–cloud interaction

N FD KNPCT

Ea E EOC Time (s) E EOC Time (s)

50 0.4029 0.1845
0.49

528 0.1515
1.00

167

100 0.3829 0.1313
0.07

8868 0.0757 4558

200 0.3786 0.1247 141,355 0 116,543

aWithout artificial viscosity.
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The simulations are carried out on a N � N � N grid with varying number of zones N ¼ 50; 100; 200.
The KNPCT run with N ¼ 200 serves as reference solution against which errors are measured. The

simulations are stopped at evolution time t ¼ 0:06 after which a violent collision between the shock and
clump has taken place. The resulting density distribution and velocity field in the x–z coordinate plane are
shown for the N ¼ 200 runs in Fig. 10. Fig. 10 also demonstrates the generation of Bx during the collision.

The FD result with artificial viscosity and the KNPCT result look similar although there are some sig-

nificant differences between them. First, the shape and position of the discontinuity after the collision is

not identical. Second, the resulting peak value in the density measured in the head of the clump is � 20%

higher for FD. The neglect of artificial viscosity in the FD scheme leads to a rather distinct and obviously

wrong picture: the discontinuity propagates too slow and the peak density reaches an unphysical high

value of .max � 87 to be compared with .max � 28 for KNPCT. The discrepancies in the density structure
are more clearly seen in Fig. 11 which shows a cut along the x-axis. Note also the existence of asymmetries

and ripples in the tail of the Bx-profile not present in the KNPCT solution. The resulting averaged error,

E, and convergence rates are listed in Table 6. Note the extremely poor quality of the FD results obtained

without artificial viscosity.
5. Concluding remark

The MHD solver presented in this paper is striking by its relative simplicity, robustness and efficiency.

The main philosophy be at the bottom of it is a hybrid ansatz: the central-upwind scheme of Kurganov

et al. [24] updates hydrodynamics including the Lorentz force term whereas Faraday�s law is integrated

using transport constraint techniques which preserve the divergence-free condition r � B ¼ 0 in discretized
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form. As demonstrated by distinct test problems results are quite competing with those obtained by more

sophisticated but also more intricate upwind schemes which must take into account the detailed eigen-

structure of the system. A potential weakness of the proposed MHD scheme are the necessary averaging
procedures to compute the upwind electric field flux. This step likely introduces additional numerical

viscosity and effectively enlarges the numerical stencil. The latter means that an extension of the scheme to

third-order accuracy, its application to adaptive grids and its transfer to massively parallel computers

becomes more difficult.
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